Geodesic grassfire for computing mixed-dimensional skeletons

نویسندگان

  • Lu Liu
  • Tao Ju
چکیده

Skeleton descriptors are commonly used to represent, understand and process shapes. While existing methods produce skeletons at a fixed dimension, such as surface or curve skeletons for a 3D object, often times objects are better described using skeleton geometry at a mixture of dimensions. In this paper we present a novel algorithm for computing mixed-dimensional skeletons. Our method is guided by a continuous analogue that extends the classical grassfire erosion. This analogue allows us to identify medial geometry at multiple dimensions, and to formulate a measure that captures how well an object part is described by medial geometry at a particular dimension. Guided by this analogue, we devise a discrete algorithm that computes a topology-preserving skeleton by iterative thinning. The algorithm is simple to implement, and produces robust skeletons that naturally capture shape components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Mixed-Signal VLSI for Skeletonization by Grassfire Transformation - Design and Evaluation Authors:

This paper presents a novel mixed-signal VLSI focal-plane array processor performing the morphological operation of skeletonization of binary images in real time. The chip exploits the inherent parallelism of the grassfire algorithm by using a massively parallel mixed-mode array achieving high computational speed and relatively low power consumption. The system is a two-dimensional array of ide...

متن کامل

Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements

Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...

متن کامل

Numerical Treatment of Geodesic Differential Equations on Two Dimensional Surfaces

This paper presents a brief instructions to nd geodesics equa-tions on two dimensional surfaces in R3. The resulting geodesic equations are solved numerically using Computer Program Matlab, the geodesics are dis-played through Figures.

متن کامل

ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE

There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...

متن کامل

Skeletons via Shocks of Boundary Evolution

In this chapter we develop the Hamiltonian formulation of the eikonal equation and then relate it to the specific case of Blum’s grassfire flow, which gives the level sets of the Euclidean distance function to the boundary. This view provides an explicit association between medial loci and the singularities of this flow. In order to detect these singularities we consider the average outward flu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009